This notebook was made to demonstrate how to work with geographic data.
/usr/local/lib/python3.7/dist-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>.
  """)
from google.colab import drive
drive.mount('/gdrive')
Mounted at /gdrive
cd ../gdrive/MyDrive/'Software Development Documents'/dataplay
/gdrive
ls
build/           dataplay.egg-info/  LICENSE      notebooks/    setup.py
CONTRIBUTING.md  dist/               Makefile     README.md
dataplay/        docs/               MANIFEST.in  settings.ini

⚠️ The writing is a work in progress. The functions work. ⚠️

Please read everything found on the mainpage before continuing; disclaimer and all.

Binder Binder Binder Open Source Love svg3

NPM License Active Python Versions GitHub last commit

GitHub stars GitHub watchers GitHub forks GitHub followers

Tweet Twitter Follow

About this Tutorial:

Whats Inside?

The Tutorial

In this notebook, the basics of working with geographic data are introduced.

  • Reading in data (points/ geoms) -- Convert lat/lng columns to point coordinates -- Geocoding address to coordinates -- Changing coordinate reference systems -- Connecting to PostGisDB's
  • Basic Operations
  • Saving shape data
  • Get Polygon Centroids
  • Working with Points and Polygons -- Map Points and Polygons -- Get Points in Polygons -- Create Choropleths -- Create Heatmaps (KDE?)

Objectives

By the end of this tutorial users should have an understanding of:

  • How to read in and process geo-data asa geo-dataframe.
  • The Coordinate Reference System and Coordinate Encoding
  • Basic geo-visualization strategies

Background

An expansice discursive on programming and cartography can be found here

Datatypes and Geo-data

Geographic data must be encoded properly order to attain the full potential of the spatial nature of your geographic data.

If you have read in a dataset using pandas it's data type will be a Dataframe.

It may be converted into a Geo-Dataframe using Geopandas as demonstrated in the sections below.

You can check a variables at any time using the dtype command:

yourGeoDataframe.dtype

Coordinate Reference Systems (CRS)

Make sure the appropriate spatial Coordinate Reference System (CRS) is used when reading in your data!

ala wiki:

A spatial reference system (SRS) or coordinate reference system (CRS) is a coordinate-based local, regional or global system used to locate geographical entities

CRS 4326 is the CRS most people are familar with when refering to latiude and longitudes.

Baltimore's 4326 CRS should be at (39.2, -76.6)

BNIA uses CRS 2248 internally Additional Information: https://docs.qgis.org/testing/en/docs/gentle_gis_introduction/coordinate_reference_systems.html

Ensure your geodataframes' coordinates are using the same CRS using the geopandas command:

yourGeoDataframe.CRS

Coordinate Encoding

When first recieving a spatial dataset, the spatial column may need to be encoded to convert its 'text' data type values into understood 'coordinate' data types before it can be understood/processed accordingly.

Namely, there are two ways to encode text into coordinates:

  • df[geom] = df[geom].apply(lambda x: loads( str(x) ))
  • df[geom] = [Point(xy) for xy in zip(df.x, df.y)]

The first approach can be used for text taking the form "Point(-76, 39)" and will encode the text too coordinates. The second approach is useful when creating a point from two columns containing lat/lng information and will create Point coordinates from the two columns.

More on this later

Raster Vs Vector Data

There exists two types of Geospatial Data, Raster and Vector. Both have different file formats.

This lab will only cover vector data.

Vector Data

Vector Data: Individual points stored as (x,y) coordinates pairs. These points can be joined to create lines or polygons.

Format of Vector data

Esri Shapefile — .shp, .dbf, .shx Description - Industry standard, most widely used. The three files listed above are needed to make a shapefile. Additional file formats may be included.

Geographic JavaScript Object Notation — .geojson, .json Description — Second most popular, Geojson is typically used in web-based mapping used by storing the coordinates as JSON.

Geography Markup Language — .gml Description — Similar to Geojson, GML has more data for the same amount of information.

Google Keyhole Markup Language — .kml, .kmz Description — XML-based and predominantly used for google earth. KMZ is a the newer, zipped version of KML.

Raster Data

Raster Data: Cell-based data where each cell represent geographic information. An Aerial photograph is one such example where each pixel has a color value

Raster Data Files: GeoTIFF — .tif, .tiff, .ovr ERDAS Imagine — .img IDRISI Raster — .rst, .rdc

Information Sourced From: https://towardsdatascience.com/getting-started-with-geospatial-works-1f7b47955438

Vector Data: Census Geographic Data:

Guided Walkthrough

SETUP:

Import Modules

%%capture
!pip install geopandas
!pip install VitalSigns
!apt install libspatialindex-dev
!pip install rtree
%%capture
! pip install geopy 
! pip install geoplot 
import matplotlib.pyplot as plt
import IPython
from IPython.core.display import HTML

import os 
from branca.colormap import linear

Configure Enviornment

 
pd.set_option('display.expand_frame_repr', False)
pd.set_option('display.precision', 2)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
 
# pd.set_option('display.expand_frame_repr', False)
# pd.set_option('display.precision', 2)
# pd.reset_option('max_colwidth')
pd.set_option('max_colwidth', 50)
# pd.reset_option('max_colwidth')

Retrieve GIS Data

As mentioned earlier:

When you use a pandas function to 'read-in' a dataset, the returned value is of a datatype called a 'Dataframe'.

We need a 'Geo-Dataframe', however, to effectively work with spatial data.

While Pandas does not support Geo-Dataframes; Geo-pandas does.

Geopandas has everything you love about pandas, but with added support for geo-spatial data.

Principle benefits of using Geopandas over Pandas when working with spatial data:

  • The geopandas plot function will now render a map by default using your 'spatial-geometries' column.
  • Libraries exist spatial-operations and interactive map usage.

There are many ways to have our spatial-data be read-in using geo-pandas into a geo-dataframe.

Namely, it means reading in Geo-Spatial-data from a:

  1. (.geojson or .shp) file directly using Geo-pandas
  2. (.csv, .json) file using Pandas and convert it to Geo-Pandas
    • using a prepared 'geometry' column
    • by transformting latitude and longitude columns into a 'geometry' column.
    • acquiring coordinates from an address
    • mapping your non-spatial-data to data-with-space
  3. Connecting to a DB

We will review each one below

Approach 1: Reading in Data Directly

If you are using Geopandas, direct imports only work with geojson and shape files.

spatial coordinate data is properly encoded with these types of files soas to make them particularly easy to use.

You can perform this using geopandas' read_file() function.

# BNIA ArcGIS Homepage: https://data-bniajfi.opendata.arcgis.com/
csa_gdf = intaker.Intake.getData("https://services1.arcgis.com/mVFRs7NF4iFitgbY/ArcGIS/rest/services/Hhchpov/FeatureServer/0/query?where=1%3D1&outFields=*&returnGeometry=true&f=pgeojson")

As you can see, the resultant variable is of type GeoDataFrame.

type(csa_gdf)
geopandas.geodataframe.GeoDataFrame

GeoDataFrames are only possible when one of the columns are of a 'Geometry' Datatype

csa_gdf.dtypes
OBJECTID            int64
CSA2010            object
hhchpov15         float64
hhchpov16         float64
hhchpov17         float64
hhchpov18         float64
hhchpov19         float64
Shape__Area       float64
Shape__Length     float64
geometry         geometry
dtype: object

Awesome. So that means, now you can plot maps all prety like:

csa_gdf.plot(column='hhchpov15')
<matplotlib.axes._subplots.AxesSubplot at 0x7fe25fd41350>

And now lets take a peak at the raw data:

csa_gdf.head(1)
OBJECTID CSA2010 hhchpov15 hhchpov16 hhchpov17 hhchpov18 hhchpov19 Shape__Area Shape__Length geometry
0 1 Allendale/Irvington/S. Hilton 38.93 34.73 32.77 35.27 32.6 6.38e+07 38770.17 POLYGON ((-76.65726 39.27600, -76.65726 39.276...

I'll show you more ways to save the data later, but for our example in the next section to work, we need a csv.

We can make one by saving the geo-dataframe avove using the to_gdf function.

The spatial data will be stored in an encoded form that will make it easy to re-open up in the future.

csa_gdf.to_csv('example.csv')

Approach 2: Converting Pandas into Geopandas

Approach 2: Method 1: Convert using a pre-formatted 'geometry' column

This approach loads a map using a geometry column

In our previous example, we saved a geo-dataframe as a csv.

Now lets re-open it up using pandas!

url = "example.csv"
geom = 'geometry'
# An example of loading in an internal BNIA file
crs = {'init' :'epsg:2248'} 
 
# Read in the dataframe
csa_gdf = intaker.Intake.getData(url)

Great!

But now what?

Well, for starters, regardless of the project you are working on: It's always a good idea to inspect your data.

This is particularly important if you don't know what you're working with.

csa_gdf.head(1)
Unnamed: 0 OBJECTID CSA2010 hhchpov15 hhchpov16 hhchpov17 hhchpov18 hhchpov19 Shape__Area Shape__Length geometry
0 0 1 Allendale/Irvington/S. Hilton 38.93 34.73 32.77 35.27 32.6 6.38e+07 38770.17 POLYGON ((-76.65725742964381 39.276002083707, ...

Take notice of how the geometry column has a special.. foramatting.

All spatial data must take on a similar form encoding for it to be properly interpretted as a spatial data-type.

As far as I can tell, This is near-identical to the table I printed out in our last example.

BUT WAIT!

You'll notice, that if I run the plot function a pretty map will not de-facto appear

csa_gdf.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7fe257651910>

Why is this? Because you're not working with a geo-dataframe but just a dataframe!

Take a look:

type(csa_gdf)
pandas.core.frame.DataFrame

Okay... So thats not right..

What can we do about this?

Well for one, our spatial data (in the geometry-column) is not of the right data-type even though it takes on the right form.

csa_gdf.dtypes
Unnamed: 0         int64
OBJECTID           int64
CSA2010           object
hhchpov15        float64
hhchpov16        float64
hhchpov17        float64
hhchpov18        float64
hhchpov19        float64
Shape__Area      float64
Shape__Length    float64
geometry          object
dtype: object

Ok. So how do we change it? Well, since it's already been properly encoded...

You can convert a columns data-type from an object (or whatver else) to a 'geometry' using the loads function.

In the example below, we convert the datatypes for all records in the 'geometry' column

csa_gdf[geom] = csa_gdf[geom].apply(lambda x: loads( str(x) ))

Thats all! Now lets see the geometry columns data-type and the entire tables's data-type

csa_gdf.dtypes
Unnamed: 0         int64
OBJECTID           int64
CSA2010           object
hhchpov15        float64
hhchpov16        float64
hhchpov17        float64
hhchpov18        float64
hhchpov19        float64
Shape__Area      float64
Shape__Length    float64
geometry          object
dtype: object
type(csa_gdf)
pandas.core.frame.DataFrame

As you can see, we have a geometry column of the right datatype, but our table is still only just a dataframe.

But now, you are ready to convert your entire pandas dataframe into a geo-dataframe.

You can do that by running the following function:

csa_gdf = GeoDataFrame(csa_gdf, crs=crs, geometry=geom)
/usr/local/lib/python3.7/dist-packages/pyproj/crs/crs.py:131: FutureWarning: '+init=<authority>:<code>' syntax is deprecated. '<authority>:<code>' is the preferred initialization method. When making the change, be mindful of axis order changes: https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6
  in_crs_string = _prepare_from_proj_string(in_crs_string)

Aaaand BOOM.

csa_gdf.plot(column='hhchpov18')
<matplotlib.axes._subplots.AxesSubplot at 0x7fe2575ad190>

goes the dy-no-mite

type(csa_gdf)
geopandas.geodataframe.GeoDataFrame

Approach 2: Method 2: Convert Column(s) to Coordinate

Approach 2: Method 2: Example: A Generic Outline

This is the generic example but it will not work since no URL is given.

 
# If your data has coordinates in two columns run this cell
# It will create a geometry column from the two.
# A public dataset is not provided for this example and will not run.
 
# Load DF HERE. Accidently deleted the link. Need to refind. 
# Just rely on example 2 for now. 
"""
exe_df['x'] = pd.to_numeric(exe_df['x'], errors='coerce')
exe_df['y'] = pd.to_numeric(exe_df['y'], errors='coerce')
# exe_df = exe_df.replace(np.nan, 0, regex=True)
 
# An example of loading in an internal BNIA file
geometry=[Point(xy) for xy in zip(exe_df.x, exe_df.y)]
exe_gdf = gpd.GeoDataFrame( exe_df.drop(['x', 'y'], axis=1), crs=crs, geometry=geometry)
"""
"\nexe_df['x'] = pd.to_numeric(exe_df['x'], errors='coerce')\nexe_df['y'] = pd.to_numeric(exe_df['y'], errors='coerce')\n# exe_df = exe_df.replace(np.nan, 0, regex=True)\n \n# An example of loading in an internal BNIA file\ngeometry=[Point(xy) for xy in zip(exe_df.x, exe_df.y)]\nexe_gdf = gpd.GeoDataFrame( exe_df.drop(['x', 'y'], axis=1), crs=crs, geometry=geometry)\n"
Approach 2: Method 2: Example: Geoloom

Since I do not readily have a dataset with lat and long's I will have to make one.

We can split the coordinates from a geodataframe like so...

# Table: Geoloom, 
# Columns:  
# In this example, we are going to read in a shapefile
geoloom_gdf = gpd.read_file("https://services1.arcgis.com/mVFRs7NF4iFitgbY/ArcGIS/rest/services/Geoloom_Crowd/FeatureServer/0/query?where=1%3D1&outFields=*&returnGeometry=true&f=pgeojson");
# then create columns for its x and y coords
geoloom_gdf['POINT_X'] = geoloom_gdf['geometry'].centroid.x
geoloom_gdf['POINT_Y'] = geoloom_gdf['geometry'].centroid.y
# Now lets just drop the geometry column and save it to have our example dataset. 
geoloom_gdf = geoloom_gdf.dropna(subset=['geometry'])
geoloom_gdf.to_csv('example.csv')
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:7: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.

  import sys
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:8: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.

  

The first thing you will want to do when given a dataset with a coordinates column is ensure its datatype.

geoloom_df = pd.read_csv('example.csv')
# We already know the x and y columns because we just saved them as such.
geoloom_df['POINT_X'] = pd.to_numeric(geoloom_df['POINT_X'], errors='coerce')
geoloom_df['POINT_Y'] = pd.to_numeric(geoloom_df['POINT_Y'], errors='coerce')
# df = df.replace(np.nan, 0, regex=True)
 
# And filter out for points only in Baltimore City. 
geoloom_df = geoloom_df[ geoloom_df['POINT_Y'] > 39.3  ]
geoloom_df = geoloom_df[ geoloom_df['POINT_Y'] < 39.5  ]
crs = {'init' :'epsg:2248'} 
geometry=[Point(xy) for xy in zip(geoloom_df['POINT_X'], geoloom_df['POINT_Y'])]
geoloom_gdf = gpd.GeoDataFrame( geoloom_df.drop(['POINT_X', 'POINT_Y'], axis=1), crs=crs, geometry=geometry)
# 39.2904° N, 76.6122°
/usr/local/lib/python3.7/dist-packages/pyproj/crs/crs.py:131: FutureWarning: '+init=<authority>:<code>' syntax is deprecated. '<authority>:<code>' is the preferred initialization method. When making the change, be mindful of axis order changes: https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6
  in_crs_string = _prepare_from_proj_string(in_crs_string)
geoloom_gdf.head(1)
Unnamed: 0 OBJECTID Data_type Attach ProjNm Descript Location URL Name PhEmail Comments GlobalID geometry
3 4 5 Artists & Resources NaN Open Works Maker Space 1400 Greenmount Ave, Baltimore, MD, 21202, USA http://www.openworksbmore.com Alyce Myatt alycemyattconsulting@gmail.com One of Jane Brown's projects! 140e7db7-33f1-49cd-8133-b6f75dba5851 POINT (-76.608 39.306)

Heres a neat trick to make it more presentable, because those points mean nothing to me.

ax = csa_gdf.plot(column='hhchpov18', edgecolor='black')
 
# now plot our points over it.
geoloom_gdf.plot(ax=ax, color='red')
 
plt.show()
<matplotlib.axes._subplots.AxesSubplot at 0x7fe25759a3d0>
Approach 2: Method 3: Using a Crosswalk (Need Crosswalk on Esri)

When you want to merge two datasets that do not share a common column, it is often useful to create a 'crosswalk' file that 'maps' records between two datasets. We can do this to append spatial data when a direct merge is not readily evident.

Check out this next example where we pull ACS Census data and use its 'tract' column and map it to a community. We can then aggregate the points along a the communities they belong to and map it on a choropleth!

We will set up our ACS query variables right here for easy changing

# Change these values in the cell below using different geographic reference codes will change those parameters
tract = '*'
county = '510' # '059' # 153 '510'
state = '24' #51
 
# Specify the download parameters the function will receieve here
tableId = 'B19049' # 'B19001'
year = '17'
saveAcs = True 

And now we will call the function with those variables and check out the result

retrieve_acs_data = acsDownload.retrieve_acs_data
IPython.core.display.HTML("<style>.rendered_html th {max-width: 200px; overflow:auto;}</style>")
# state, county, tract, tableId, year, saveOriginal, save 
df = retrieve_acs_data(state, county, tract, tableId, year)
df.head(1)
df.to_csv('tracts_data.csv')
B19049_001E_Median_household_income_in_the_past_12_months_(in_2017_inflation-adjusted_dollars)_--_Total B19049_002E_Median_household_income_in_the_past_12_months_(in_2017_inflation-adjusted_dollars)_--_Householder_under_25_years B19049_003E_Median_household_income_in_the_past_12_months_(in_2017_inflation-adjusted_dollars)_--_Householder_25_to_44_years B19049_004E_Median_household_income_in_the_past_12_months_(in_2017_inflation-adjusted_dollars)_--_Householder_45_to_64_years B19049_005E_Median_household_income_in_the_past_12_months_(in_2017_inflation-adjusted_dollars)_--_Householder_65_years_and_over state county tract
NAME
Census Tract 2710.02 38358 -666666666 34219 40972 37143 24 510 271002

This contains the CSA labels we will map our tracts to. This terminal command will download it

!wget https://raw.githubusercontent.com/bniajfi/bniajfi/main/CSA-to-Tract-2010.csv
--2021-10-12 18:32:50--  https://raw.githubusercontent.com/bniajfi/bniajfi/main/CSA-to-Tract-2010.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 8101 (7.9K) [text/plain]
Saving to: ‘CSA-to-Tract-2010.csv’

CSA-to-Tract-2010.c 100%[===================>]   7.91K  --.-KB/s    in 0.002s  

2021-10-12 18:32:50 (3.85 MB/s) - ‘CSA-to-Tract-2010.csv’ saved [8101/8101]

Here

crosswalk = pd.read_csv('CSA-to-Tract-2010.csv')
crosswalk.tail(1)
TRACTCE10 GEOID10 CSA2010
199 280500 24510280500 Oldtown/Middle East
mergeDatasets = merge.mergeDatasets

merged_df_geom = mergeDatasets(left_ds=df, right_ds=crosswalk, crosswalk_ds=False,
                  left_col='tract', right_col='TRACTCE10',
                  crosswalk_left_col = False, crosswalk_right_col = False,
                  merge_how='outer', # left right or columnname to retrieve
                  interactive=False)
merged_df_geom.head(1)
B19049_001E_Median_household_income_in_the_past_12_months_(in_2017_inflation-adjusted_dollars)_--_Total B19049_002E_Median_household_income_in_the_past_12_months_(in_2017_inflation-adjusted_dollars)_--_Householder_under_25_years B19049_003E_Median_household_income_in_the_past_12_months_(in_2017_inflation-adjusted_dollars)_--_Householder_25_to_44_years B19049_004E_Median_household_income_in_the_past_12_months_(in_2017_inflation-adjusted_dollars)_--_Householder_45_to_64_years B19049_005E_Median_household_income_in_the_past_12_months_(in_2017_inflation-adjusted_dollars)_--_Householder_65_years_and_over state county tract TRACTCE10 GEOID10 CSA2010
0 38358 -666666666 34219 40972 37143 24 510 271002 271002.0 2.45e+10 Greater Govans
import geopandas as gpd
Hhchpov = gpd.read_file("https://services1.arcgis.com/mVFRs7NF4iFitgbY/ArcGIS/rest/services/Hhchpov/FeatureServer/0/query?where=1%3D1&outFields=*&returnGeometry=true&f=pgeojson")
Hhchpov = Hhchpov[['CSA2010', 'hhchpov15',	'hhchpov16',	'hhchpov17',	'hhchpov18', 'geometry']]
Hhchpov.to_file("Hhchpov.geojson", driver='GeoJSON')
Hhchpov.to_csv('Hhchpov.csv')
gpd.read_file("Hhchpov.geojson").head(1)
CSA2010 hhchpov15 hhchpov16 hhchpov17 hhchpov18 geometry
0 Allendale/Irvington/S. Hilton 38.93 34.73 32.77 35.27 POLYGON ((-76.65726 39.27600, -76.65726 39.276...
# df.merge(crosswalk, left_on='tract', right_on='TRACTCE10')

A simple example of how this would work

merged_df = mergeDatasets(left_ds=merged_df_geom, right_ds=Hhchpov, crosswalk_ds=False,
                  left_col='CSA2010', right_col='CSA2010',
                  crosswalk_left_col = False, crosswalk_right_col = False,
                  merge_how='outer', # left right or columnname to retrieve
                  interactive=False)
 
# The attributes are what we will use.
in_crs = 2248 # The CRS we recieve our data 
out_crs = 4326 # The CRS we would like to have our data represented as
geom = 'geometry' # The column where our spatial information lives.

# To create this dataset I had to commit a full outer join. 
# In this way geometries will be included even if there merge does not have a direct match. 
# What this will do is that it means at least one (near) empty record for each community will exist that includes (at minimum) the geographic information and name of a Community.
# That way if no point level information existed in the community, that during the merge the geoboundaries are still carried over.

# Primary Table
# Description: I created a public dataset from a google xlsx sheet 'Bank Addresses and Census Tract'.
# Table: FDIC Baltimore Banks
# Columns: Bank Name, Address(es), Census Tract
left_ds = 'tracts_data.csv'
left_col = 'tract'

# Crosswalk Table
# Table: Crosswalk Census Communities
# 'TRACT2010', 'GEOID2010', 'CSA2010'
crosswalk_ds = 'CSA-to-Tract-2010.csv'
use_crosswalk = True
crosswalk_left_col = 'TRACTCE10'
crosswalk_right_col = 'CSA2010'

# Secondary Table
# Table: Baltimore Boundaries => HHCHPOV
# 'TRACTCE10', 'GEOID10', 'CSA', 'NAME10', 'Tract', 'geometry'
right_ds = 'Hhchpov.geojson'
right_col ='CSA2010'

interactive = True
merge_how = 'outer'

# reutrns a pandas dataframe
mergedf = merge.mergeDatasets( left_ds=left_ds, left_col=left_col, 
              crosswalk_ds=crosswalk_ds,
              crosswalk_left_col = crosswalk_left_col, crosswalk_right_col = crosswalk_right_col,
              right_ds=right_ds, right_col=right_col, 
              merge_how=merge_how, interactive = interactive )
mergedf.dtypes
# mergedf[geom] = mergedf[geom].apply(lambda x: loads( str(x) ) ) 

# Process the dataframe as a geodataframe with a known CRS and geom column 
mergedGdf = GeoDataFrame(mergedf, crs=in_crs, geometry=geom) 
mergedGdf.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7fe2560de610>
Approach 2: Method 4: Geocoding Addresses and Landmarks to Coordinates

Sometimes (usually) we just don't have the coordinates of a place, but we do know it's address or that it is an established landmark.

In such cases we attempt 'geo-coding' these points in an automated manner.

While convenient, this process is error prone, so be sure to check it's work!

For this next example to take place, we need a dataset that has a bunch of addresses.

We can use the geoloom dataset from before in this example. We'll just drop geo'spatial data.

geoloom = gpd.read_file("https://services1.arcgis.com/mVFRs7NF4iFitgbY/ArcGIS/rest/services/Geoloom_Crowd/FeatureServer/0/query?where=1%3D1&outFields=*&returnGeometry=true&f=pgeojson");
geoloom = geoloom.dropna(subset=['geometry'])
geoloom = geoloom.drop(columns=['geometry','GlobalID', 'POINT_X',	'POINT_Y'])
geoloom.head(1)
OBJECTID Data_type Attach ProjNm Descript Location URL Name PhEmail Comments
0 1 Artists & Resources None Joe Test 123 Market Pl, Baltimore, MD, 21202, USA

But if for whatever reason the link is down, you can use this example dataframe mapping just some of the many malls in baltimore.

address_df = pd.DataFrame({ 
    'Location' : pd.Series([
    '100 N. Holliday St, Baltimore, MD 21202',
    '200 E Pratt St, Baltimore, MD',
    '2401 Liberty Heights Ave, Baltimore, MD',
    '201 E Pratt St, Baltimore, MD',
    '3501 Boston St, Baltimore, MD',
    '857 E Fort Ave, Baltimore, MD',
    '2413 Frederick Ave, Baltimore, MD'
  ]),
    'Address' : pd.Series([ 
    'Baltimore City Council',
    'The Gallery at Harborplace',
    'Mondawmin Mall',
    'Harborplace',
    'The Shops at Canton Crossing',
    'Southside Marketplace',
    'Westside Shopping Center'
  ])
})

address_df.head()
Location Address
0 100 N. Holliday St, Baltimore, MD 21202 Baltimore City Council
1 200 E Pratt St, Baltimore, MD The Gallery at Harborplace
2 2401 Liberty Heights Ave, Baltimore, MD Mondawmin Mall
3 201 E Pratt St, Baltimore, MD Harborplace
4 3501 Boston St, Baltimore, MD The Shops at Canton Crossing

You can use either the Location or Address column to perform the geo-coding on.

address_df = geoloom.copy()
addrCol = 'Location'

This function takes a while. The less columns/data/records the faster it executes.

# In this example we retrieve and map a dataset with no lat/lng but containing an address

# In this example our data is stored in the 'STREET' attribute
geometry = []
geolocator = Nominatim(user_agent="my-application")

for index, row in address_df.iterrows():
  # We will try and return an address for each Street Name
  try: 
      # retrieve the geocoded information of our street address
      geol = geolocator.geocode(row[addrCol], timeout=None)

      # create a mappable coordinate point from the response object's lat/lang values.
      pnt = Point(geol.longitude, geol.latitude)
      
      # Append this value to the list of geometries
      geometry.append(pnt)
      
  except: 
      # If no street name was found decide what to do here.
      # df.loc[index]['geom'] = Point(0,0) # Alternate method
      geometry.append(Point(0,0))
      
# Finally, we stuff the geometry data we created back into the dataframe
address_df['geometry'] = geometry
address_df.head(1)
OBJECTID Data_type Attach ProjNm Descript Location URL Name PhEmail Comments geometry
0 1 Artists & Resources None Joe Test 123 Market Pl, Baltimore, MD, 21202, USA POINT (-76.60681 39.28759)

Awesome! Now convert the dataframe into a geodataframe and map it!

gdf = gpd.GeoDataFrame( address_df, geometry=geometry)
gdf = gdf[ gdf.centroid.y > 39.3  ]
gdf = gdf[ gdf.centroid.y < 39.5  ]
ax = csa_gdf.plot(column='hhchpov18', edgecolor='black')

# now plot our points over it.
geoloom_gdf.plot(ax=ax, color='red')
<matplotlib.axes._subplots.AxesSubplot at 0x7fe255f7f650>

A litte later down, we'll see how to make this even-more interactive.

Approach 3: Connecting to a PostGIS database

In the following example pulls point geodata from a Postgres database.

We will pull the postgres point data in two manners.

  • SQL query where an SQL query uses ST_Transform(the_geom,4326) to transform the_geom's CRS from a DATABASE Binary encoding into standard Lat Long's
  • Using a plan SQL query and performing the conversion using gpd.io.sql.read_postgis() to pull the data in as 2248 and convert the CRS using .to_crs(epsg=4326)
  • These examples will not work in colabs as their is no local database to connect to and has been commented out for that reason
'''
conn = psycopg2.connect(host='', dbname='', user='', password='', port='')

# DB Import Method One
sql1 = 'SELECT the_geom, gid, geogcode, ooi, address, addrtyp, city, block, lot, desclu, existing FROM housing.mdprop_2017v2 limit 100;'
pointData = gpd.io.sql.read_postgis(sql1, conn, geom_col='the_geom', crs=2248)
pointData = pointData.to_crs(epsg=4326)

# DB Import Method Two
sql2 = 'SELECT ST_Transform(the_geom,4326) as the_geom, ooi, desclu, address FROM housing.mdprop_2017v2;'
pointData = gpd.GeoDataFrame.from_postgis(sql2, conn, geom_col='the_geom', crs=4326)
pointData.head()
pointData.plot()
'''
"\nconn = psycopg2.connect(host='', dbname='', user='', password='', port='')\n\n# DB Import Method One\nsql1 = 'SELECT the_geom, gid, geogcode, ooi, address, addrtyp, city, block, lot, desclu, existing FROM housing.mdprop_2017v2 limit 100;'\npointData = gpd.io.sql.read_postgis(sql1, conn, geom_col='the_geom', crs=2248)\npointData = pointData.to_crs(epsg=4326)\n\n# DB Import Method Two\nsql2 = 'SELECT ST_Transform(the_geom,4326) as the_geom, ooi, desclu, address FROM housing.mdprop_2017v2;'\npointData = gpd.GeoDataFrame.from_postgis(sql2, conn, geom_col='the_geom', crs=4326)\npointData.head()\npointData.plot()\n"

Basics Operations

Inspection

def geomSummary(gdf): return type(gdf), gdf.crs, gdf.columns;
# for p in df['Tract'].sort_values(): print(p)
geomSummary(csa_gdf)
(geopandas.geodataframe.GeoDataFrame, <Projected CRS: EPSG:2248>
 Name: NAD83 / Maryland (ftUS)
 Axis Info [cartesian]:
 - X[east]: Easting (US survey foot)
 - Y[north]: Northing (US survey foot)
 Area of Use:
 - name: United States (USA) - Maryland - counties of Allegany; Anne Arundel; Baltimore; Calvert; Caroline; Carroll; Cecil; Charles; Dorchester; Frederick; Garrett; Harford; Howard; Kent; Montgomery; Prince Georges; Queen Annes; Somerset; St Marys; Talbot; Washington; Wicomico; Worcester.
 - bounds: (-79.49, 37.97, -74.97, 39.73)
 Coordinate Operation:
 - name: SPCS83 Maryland zone (US Survey feet)
 - method: Lambert Conic Conformal (2SP)
 Datum: North American Datum 1983
 - Ellipsoid: GRS 1980
 - Prime Meridian: Greenwich, Index(['Unnamed_ 0', 'OBJECTID', 'CSA2010', 'hhchpov15', 'hhchpov16',
        'hhchpov17', 'hhchpov18', 'hhchpov19', 'Shape__Are', 'Shape__Len',
        'geometry'],
       dtype='object'))

Converting CRS

# The gdf must be loaded with a known crs in order for the to_crs conversion to work
# We use this often to converting BNIAs custom CRS to the common type 
out_crs = 4326
csa_gdf = csa_gdf.to_crs(epsg=out_crs)

Saving

filename = 'TEST_FILE_NAME'
csa_gdf.to_file(f"{filename}.geojson", driver='GeoJSON')
csa_gdf = csa_gdf.to_crs(epsg=2248) #just making sure
csa_gdf.to_file(filename+'.shp', driver='ESRI Shapefile')
csa_gdf = gpd.read_file(filename+'.shp')

Draw Tool

import folium
from folium.plugins import Draw
# Draw tool. Create and export your own boundaries
m = folium.Map()
draw = Draw()
draw.add_to(m)
m = folium.Map(location=[39.28759453969165, -76.61278931706487], zoom_start=12)
draw = Draw(export=True)
draw.add_to(m)
# m.save(os.path.join('results', 'Draw1.html'))
m

Geometric Manipulations

Boundary

newcsa = csa_gdf.copy()
newcsa['geometry'] = csa_gdf.boundary
newcsa.plot(column='CSA2010' )
<matplotlib.axes._subplots.AxesSubplot at 0x7fe255fae850>

envelope

newcsa = csa_gdf.copy()
newcsa['geometry'] = csa_gdf.envelope
newcsa.plot(column='CSA2010' )

convex_hull

newcsa = csa_gdf.copy()
newcsa['geometry'] = csa_gdf.convex_hull
newcsa.plot(column='CSA2010' )
# , cmap='OrRd', scheme='quantiles'
# newcsa.boundary.plot(  )

simplify

newcsa = csa_gdf.copy()
newcsa['geometry'] = csa_gdf.simplify(30)
newcsa.plot(column='CSA2010' )

buffer

newcsa = csa_gdf.copy()
newcsa['geometry'] = csa_gdf.buffer(0.01)
newcsa.plot(column='CSA2010' )

rotate

newcsa = csa_gdf.copy()
newcsa['geometry'] = csa_gdf.rotate(30)
newcsa.plot(column='CSA2010' )

scale

newcsa = csa_gdf.copy()
newcsa['geometry'] = csa_gdf.scale(3, 2)
newcsa.plot(column='CSA2010' )

skew

newcsa = csa_gdf.copy()
newcsa['geometry'] = csa_gdf.skew(1, 10)
newcsa.plot(column='CSA2010' )

Advanced

Create Geospatial Functions

Operations:

  • Reading in data (points/ geoms) -- Convert lat/lng columns to point coordinates -- Geocoding address to coordinates -- Changing coordinate reference systems -- Connecting to PostGisDB's
  • Basic Operations
  • Saving shape data
  • Get Polygon Centroids
  • Working with Points and Polygons -- Map Points and Polygons -- Get Points in Polygons

Input(s):

  • Dataset (points/ bounds) url
  • Points/ bounds geometry column(s)
  • Points/ bounds crs's
  • Points/ bounds mapping color(s)
  • New filename

Output: File

This function will handle common geo spatial exploratory methods. It covers everything discussed in the basic operations and more!

workWithGeometryData[source]

workWithGeometryData(method=False, df=False, polys=False, ptsCoordCol=False, polygonsCoordCol=False, polyColorCol=False, polygonsLabel='polyOnPoint', pntsClr='red', polysClr='white', interactive=False)

map_points[source]

map_points(data, lat_col='POINT_Y', lon_col='POINT_X', zoom_start=11, plot_points=True, cluster_points=False, pt_radius=15, draw_heatmap=False, heat_map_weights_col=None, heat_map_weights_normalize=True, heat_map_radius=15, popup=False)

Creates a map given a dataframe of points. Can also produce a heatmap overlay

Arg: df: dataframe containing points to maps lat_col: Column containing latitude (string) lon_col: Column containing longitude (string) zoom_start: Integer representing the initial zoom of the map plot_points: Add points to map (boolean) pt_radius: Size of each point draw_heatmap: Add heatmap to map (boolean) heat_map_weights_col: Column containing heatmap weights heat_map_weights_normalize: Normalize heatmap weights (boolean) heat_map_radius: Size of heatmap point

Returns: folium map object

def maps_points(df, lat_col='POINT_Y', lon_col='POINT_X', zoom_start=11, \
                plot_points=False, pt_radius=15, \
                draw_heatmap=True, heat_map_weights_col=None, \
                heat_map_weights_normalize=True, heat_map_radius=15):
    """Creates a map given a dataframe of points. Can also produce a heatmap overlay
    Arg:
        df: dataframe containing points to maps
        lat_col: Column containing latitude (string) 
    """

    ## center map in the middle of points center in
    middle_lat = df[lat_col].median()
    middle_lon = df[lon_col].median()

    curr_map = folium.Map(location=[middle_lat, middle_lon],
                          zoom_start=zoom_start)

    # add points to map
    if plot_points:
        for _, row in df.iterrows():
            folium.CircleMarker([row[lat_col], row[lon_col]],
                                radius=pt_radius,
                                popup=row['name'],
                                fill_color="#3db7e4", # divvy color
                               ).add_to(curr_map)

    # add heatmap
    if draw_heatmap:
        # convert to (n, 2) or (n, 3) matrix format
        if heat_map_weights_col is None:
            stations = zip(df[lat_col], df[lon_col])
        else:
            # if we have to normalize
            if heat_map_weights_normalize:
                df[heat_map_weights_col] = \
                    df[heat_map_weights_col] / df[heat_map_weights_col].sum()

            stations = zip(df[lat_col], df[lon_col], df[heat_map_weights_col])

        curr_map.add_child(plugins.HeatMap(stations, radius=heat_map_radius))

    return curr_map

Processing Geometry is tedius enough to merit its own handler

readInGeometryData[source]

readInGeometryData(url=False, porg=False, geom=False, lat=False, lng=False, revgeocode=False, save=False, in_crs=4326, out_crs=False)

As you can see we have a lot of points. Lets see if there is any better way to visualize this.

Example: Using the advanced Functions

Playing with Points: Geoloom

Points In Polygons

The red dots from when we mapped the geoloom points above were a bit too noisy.

Lets create a choropleth instead!

We can do this by aggregating by CSA.

To do this, start of by finding which points are inside of which polygons!

Since the geoloom data does not have a CSA dataset, we will need merge it to one that does!

Lets use the childhood poverty link from example one and load it up because it contains the geometry data and the csa labels.

# csa_gdf = Intake.getData('https://raw.githubusercontent.com/bniajfi/bniajfi/main/CSA-to-Tract-2010.csv')
# BNIA ArcGIS Homepage: https://data-bniajfi.opendata.arcgis.com/
csa_gdf_url = "https://services1.arcgis.com/mVFRs7NF4iFitgbY/ArcGIS/rest/services/Hhchpov/FeatureServer/0/query?where=1%3D1&outFields=*&returnGeometry=true&f=pgeojson"
csa_gdf = readInGeometryData(url=csa_gdf_url, porg=False, geom='geometry', lat=False, lng=False, revgeocode=False,  save=False, in_crs=2248, out_crs=False)

And now lets pull in our geoloom data. But to be sure, drop the empty geometry columns or the function directly below will now work.

geoloom_gdf_url = "https://services1.arcgis.com/mVFRs7NF4iFitgbY/ArcGIS/rest/services/Geoloom_Crowd/FeatureServer/0/query?where=1%3D1&outFields=*&returnGeometry=true&f=pgeojson"
geoloom_gdf = readInGeometryData(url=geoloom_gdf_url, porg=False, geom='geometry', lat=False, lng=False, revgeocode=False,  save=False, in_crs=4326, out_crs=False)
geoloom_gdf = geoloom_gdf.dropna(subset=['geometry'])
# geoloom_gdf = geoloom_gdf.drop(columns=['POINT_X','POINT_Y'])
geoloom_gdf.head(1)
OBJECTID Data_type Attach ProjNm Descript Location URL Name PhEmail Comments POINT_X POINT_Y GlobalID geometry
0 1 Artists & Resources None Joe Test 123 Market Pl, Baltimore, MD, 21202, USA -8.53e+06 4.76e+06 e59b4931-e0c8-4d6b-b781-1e672bf8545a POINT (-76.60661 39.28746)

And now use a point in polygon method 'ponp' to get the CSA2010 column from our CSA dataset added as a column to each geoloom record.

geoloom_w_csas = workWithGeometryData(method='pinp', df=geoloom_gdf, polys=csa_gdf, ptsCoordCol='geometry', polygonsCoordCol='geometry', polyColorCol='hhchpov18', polygonsLabel='CSA2010', pntsClr='red', polysClr='white')
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:70: FutureWarning:     You are passing non-geometry data to the GeoSeries constructor. Currently,
    it falls back to returning a pandas Series. But in the future, we will start
    to raise a TypeError instead.

You'll see you have a 'pointsinpolygons' column now.

geoloom_w_csas.plot( column='pointsinpolygon', legend=True)
<matplotlib.axes._subplots.AxesSubplot at 0x7fe257481250>
geoloom_w_csas.head(1)
OBJECTID CSA2010 hhchpov15 hhchpov16 hhchpov17 hhchpov18 hhchpov19 Shape__Area Shape__Length geometry pointsinpolygon
0 1 Allendale/Irvington/S. Hilton 38.93 34.73 32.77 35.27 32.6 6.38e+07 38770.17 POLYGON ((-76.65726 39.27600, -76.65726 39.276... 0

Polygons in Points

Alternately, you can run the ponp function and have returned the geoloom dataset

geoloom_w_csas = workWithGeometryData(method='ponp', df=geoloom_gdf, polys=csa_gdf, ptsCoordCol='geometry', polygonsCoordCol='geometry', polyColorCol='hhchpov18', polygonsLabel='CSA2010', pntsClr='red', polysClr='white')

We can count the totals per CSA using value_counts

Alternately, we could map the centroid of boundaries within another boundary to find boundaries within boundaries

geoloom_w_csas['POINT_Y'] = geoloom_w_csas.centroid.y
geoloom_w_csas['POINT_X'] = geoloom_w_csas.centroid.x

# We already know the x and y columns because we just saved them as such.
geoloom_w_csas['POINT_X'] = pd.to_numeric(geoloom_w_csas['POINT_X'], errors='coerce')
geoloom_w_csas['POINT_Y'] = pd.to_numeric(geoloom_w_csas['POINT_Y'], errors='coerce')
# df = df.replace(np.nan, 0, regex=True)

# And filter out for points only in Baltimore City. 
geoloom_w_csas = geoloom_w_csas[ geoloom_w_csas['POINT_Y'] > 39.3  ]
geoloom_w_csas = geoloom_w_csas[ geoloom_w_csas['POINT_Y'] < 39.5  ]
map_points(geoloom_w_csas, lat_col='POINT_Y', lon_col='POINT_X', zoom_start=11, plot_points=True, cluster_points=False, 
           pt_radius=7, draw_heatmap=True, heat_map_weights_col='POINT_X', heat_map_weights_normalize=True, 
           heat_map_radius=15, popup='CSA2010')
[39.3059284576752, -76.6084962613261] Midtown
[39.354049947202, -76.594919959319] Northwood
[39.3053725867077, -76.6165491304473] Midtown
[39.3053725867077, -76.6165491304473] Midtown
[39.3053725867077, -76.6165491304473] Midtown
[39.3205305004358, -76.62029445046] Medfield/Hampden/Woodberry/Remington
[39.3132344995704, -76.6156319686376] Greater Charles Village/Barclay
[39.3025382004351, -76.6123550083559] Midtown
[39.330960442152, -76.6097324686376] North Baltimore/Guilford/Homeland
[39.3394246352966, -76.5728076182136] Lauraville
[39.3663642396761, -76.5807452381971] Loch Raven
[39.3112287786895, -76.6169870308888] Greater Charles Village/Barclay
[39.3313095000031, -76.6273815000012] Medfield/Hampden/Woodberry/Remington
[39.3111954460472, -76.6168148083572] Greater Charles Village/Barclay
[39.3097800000032, -76.6165900000012] Midtown
[39.3053725867077, -76.6165491304473] Midtown
[39.3140701557246, -76.6357692877849] Penn North/Reservoir Hill
[39.3140701557246, -76.6357692877849] Penn North/Reservoir Hill
[39.3061130466302, -76.6162883877901] Midtown
[39.3017150000032, -76.6202300000012] Midtown
[39.3017150000032, -76.6202300000012] Midtown
[39.3159400000032, -76.6096900000012] Greater Charles Village/Barclay
[39.3243857282909, -76.6294667363678] Medfield/Hampden/Woodberry/Remington
[39.3518547124792, -76.5618773076933] Harford/Echodale
[39.3540395711272, -76.5949191991194] Northwood
[39.3454084293701, -76.6310377077168] Greater Roland Park/Poplar Hill
[39.3054254932224, -76.6429111990029] Sandtown-Winchester/Harlem Park
[39.3053725867077, -76.6165491304473] Midtown
[39.3053735782905, -76.6166029730092] Midtown
[39.3098540513334, -76.6422915487344] Sandtown-Winchester/Harlem Park
[39.331329442152, -76.6275211151839] Medfield/Hampden/Woodberry/Remington
[39.331329442152, -76.6275211151839] Medfield/Hampden/Woodberry/Remington
[39.3061685720253, -76.6163105668306] Midtown
[39.3557085114907, -76.6325299272257] Greater Roland Park/Poplar Hill
[39.3557085114907, -76.6325299272257] Greater Roland Park/Poplar Hill
[39.3320899965888, -76.5492359719015] Cedonia/Frankford
Make this Notebook Trusted to load map: File -> Trust Notebook

But if that doesn't do it for you, we can also create heat maps and marker clusters

 
m = folium.Map(location=[39.28759453969165, -76.61278931706487], zoom_start=12)
marker_cluster = MarkerCluster().add_to(m)
stations = geoloom_w_csas.apply(lambda p: folium.Marker( location=[p['POINT_Y'],p['POINT_X']], popup='Add popup text here.', icon=None ).add_to(marker_cluster), axis=1 )
m
Make this Notebook Trusted to load map: File -> Trust Notebook
map_points(geoloom_w_csas, lat_col='POINT_Y', lon_col='POINT_X', zoom_start=11, plot_points=True, cluster_points=False, 
           pt_radius=15, draw_heatmap=False, heat_map_weights_col='POINT_X', heat_map_weights_normalize=True, 
           heat_map_radius=15, popup='CSA2010')
[39.3059284576752, -76.6084962613261] Midtown
[39.354049947202, -76.594919959319] Northwood
[39.3053725867077, -76.6165491304473] Midtown
[39.3053725867077, -76.6165491304473] Midtown
[39.3053725867077, -76.6165491304473] Midtown
[39.3205305004358, -76.62029445046] Medfield/Hampden/Woodberry/Remington
[39.3132344995704, -76.6156319686376] Greater Charles Village/Barclay
[39.3025382004351, -76.6123550083559] Midtown
[39.330960442152, -76.6097324686376] North Baltimore/Guilford/Homeland
[39.3394246352966, -76.5728076182136] Lauraville
[39.3663642396761, -76.5807452381971] Loch Raven
[39.3112287786895, -76.6169870308888] Greater Charles Village/Barclay
[39.3313095000031, -76.6273815000012] Medfield/Hampden/Woodberry/Remington
[39.3111954460472, -76.6168148083572] Greater Charles Village/Barclay
[39.3097800000032, -76.6165900000012] Midtown
[39.3053725867077, -76.6165491304473] Midtown
[39.3140701557246, -76.6357692877849] Penn North/Reservoir Hill
[39.3140701557246, -76.6357692877849] Penn North/Reservoir Hill
[39.3061130466302, -76.6162883877901] Midtown
[39.3017150000032, -76.6202300000012] Midtown
[39.3017150000032, -76.6202300000012] Midtown
[39.3159400000032, -76.6096900000012] Greater Charles Village/Barclay
[39.3243857282909, -76.6294667363678] Medfield/Hampden/Woodberry/Remington
[39.3518547124792, -76.5618773076933] Harford/Echodale
[39.3540395711272, -76.5949191991194] Northwood
[39.3454084293701, -76.6310377077168] Greater Roland Park/Poplar Hill
[39.3054254932224, -76.6429111990029] Sandtown-Winchester/Harlem Park
[39.3053725867077, -76.6165491304473] Midtown
[39.3053735782905, -76.6166029730092] Midtown
[39.3098540513334, -76.6422915487344] Sandtown-Winchester/Harlem Park
[39.331329442152, -76.6275211151839] Medfield/Hampden/Woodberry/Remington
[39.331329442152, -76.6275211151839] Medfield/Hampden/Woodberry/Remington
[39.3061685720253, -76.6163105668306] Midtown
[39.3557085114907, -76.6325299272257] Greater Roland Park/Poplar Hill
[39.3557085114907, -76.6325299272257] Greater Roland Park/Poplar Hill
[39.3320899965888, -76.5492359719015] Cedonia/Frankford
Make this Notebook Trusted to load map: File -> Trust Notebook
map_points(geoloom_w_csas, lat_col='POINT_Y', lon_col='POINT_X', zoom_start=11, plot_points=True, cluster_points=False,
               pt_radius=1, draw_heatmap=True, heat_map_weights_col=None, heat_map_weights_normalize=True,
               heat_map_radius=15, popup='CSA2010')
[39.3059284576752, -76.6084962613261] Midtown
[39.354049947202, -76.594919959319] Northwood
[39.3053725867077, -76.6165491304473] Midtown
[39.3053725867077, -76.6165491304473] Midtown
[39.3053725867077, -76.6165491304473] Midtown
[39.3205305004358, -76.62029445046] Medfield/Hampden/Woodberry/Remington
[39.3132344995704, -76.6156319686376] Greater Charles Village/Barclay
[39.3025382004351, -76.6123550083559] Midtown
[39.330960442152, -76.6097324686376] North Baltimore/Guilford/Homeland
[39.3394246352966, -76.5728076182136] Lauraville
[39.3663642396761, -76.5807452381971] Loch Raven
[39.3112287786895, -76.6169870308888] Greater Charles Village/Barclay
[39.3313095000031, -76.6273815000012] Medfield/Hampden/Woodberry/Remington
[39.3111954460472, -76.6168148083572] Greater Charles Village/Barclay
[39.3097800000032, -76.6165900000012] Midtown
[39.3053725867077, -76.6165491304473] Midtown
[39.3140701557246, -76.6357692877849] Penn North/Reservoir Hill
[39.3140701557246, -76.6357692877849] Penn North/Reservoir Hill
[39.3061130466302, -76.6162883877901] Midtown
[39.3017150000032, -76.6202300000012] Midtown
[39.3017150000032, -76.6202300000012] Midtown
[39.3159400000032, -76.6096900000012] Greater Charles Village/Barclay
[39.3243857282909, -76.6294667363678] Medfield/Hampden/Woodberry/Remington
[39.3518547124792, -76.5618773076933] Harford/Echodale
[39.3540395711272, -76.5949191991194] Northwood
[39.3454084293701, -76.6310377077168] Greater Roland Park/Poplar Hill
[39.3054254932224, -76.6429111990029] Sandtown-Winchester/Harlem Park
[39.3053725867077, -76.6165491304473] Midtown
[39.3053735782905, -76.6166029730092] Midtown
[39.3098540513334, -76.6422915487344] Sandtown-Winchester/Harlem Park
[39.331329442152, -76.6275211151839] Medfield/Hampden/Woodberry/Remington
[39.331329442152, -76.6275211151839] Medfield/Hampden/Woodberry/Remington
[39.3061685720253, -76.6163105668306] Midtown
[39.3557085114907, -76.6325299272257] Greater Roland Park/Poplar Hill
[39.3557085114907, -76.6325299272257] Greater Roland Park/Poplar Hill
[39.3320899965888, -76.5492359719015] Cedonia/Frankford
Make this Notebook Trusted to load map: File -> Trust Notebook

And Time Sliders

Choropleth Timeslider
styledata = {}
# For the Index of each CSA
for idx, csa in rdf.iterrows():
    df = pd.DataFrame( { "color": csa.values[1:-1] }, index=dt_index, )
    styledata[idx] = df

max_color, min_color = 0, 0
for country, data in styledata.items():
    max_color = max(max_color, data["color"].max())
    min_color = min(max_color, data["color"].min())

cmap = linear.PuRd_09.scale(min_color, max_color)
def norm(x): return (x - x.min()) / (x.max() - x.min())
for country, data in styledata.items():
    data["color"] = data["color"].apply(cmap)
    data["opacity"] = 1

styledict = { str(country): data.to_dict(orient="index") for country, data in styledata.items() }
import folium
from folium.plugins import TimeSliderChoropleth

m = folium.Map([39.28759453969165, -76.61278931706487], width='50%', height='50%', zoom_start=12)
g = TimeSliderChoropleth( rdf.to_json(), styledict=styledict, ).add_to(m)
m
Output hidden; open in https://colab.research.google.com to view.